

Today we produce 15 ingredient products from 5 native seaweed species, to a consistent standard, supported by more than a decade of independent compositional analysis and applied nutrition research. Seagreens® are 'country of origin' Great Britain.

Ascophyllum nodosum: Knotted wrack

There are red, green, and brown seaweeds, brown overall being the most nutritious.

Ascophyllum is a native brown species, the most prolific of the 'Wrack' family.

It is adding *nutrient density and health benefits* to an ever-increasing range of nutrition and food products.

Fucus vesiculosus: Bladder wrack

The ancient Greeks called all seaweed *Phycos*.

Which is why until recently, all the Wrack species were called *Fucus*, because they are so *closely related*.

Bladder wrack is the highest in *antioxidants*. *Fucus Serratus* and *Fucus Spiralis* have similar organoleptic and nutritonal properties.

Palmaria palmata: Dulse

Traditionally prized for its flavour, variously decribed as salty and smokey, it has a well balanced nutritional profile, *with very low iodine*.

Scientifically, it has low *umami*, but a 'high roasted', bitter taste and aroma.

'Ruby Rich Dulse', chopped and sold in sachets in Waitrose stores, is Seagreens® *Palmaria* from the western shores of Ireland and Scotland.

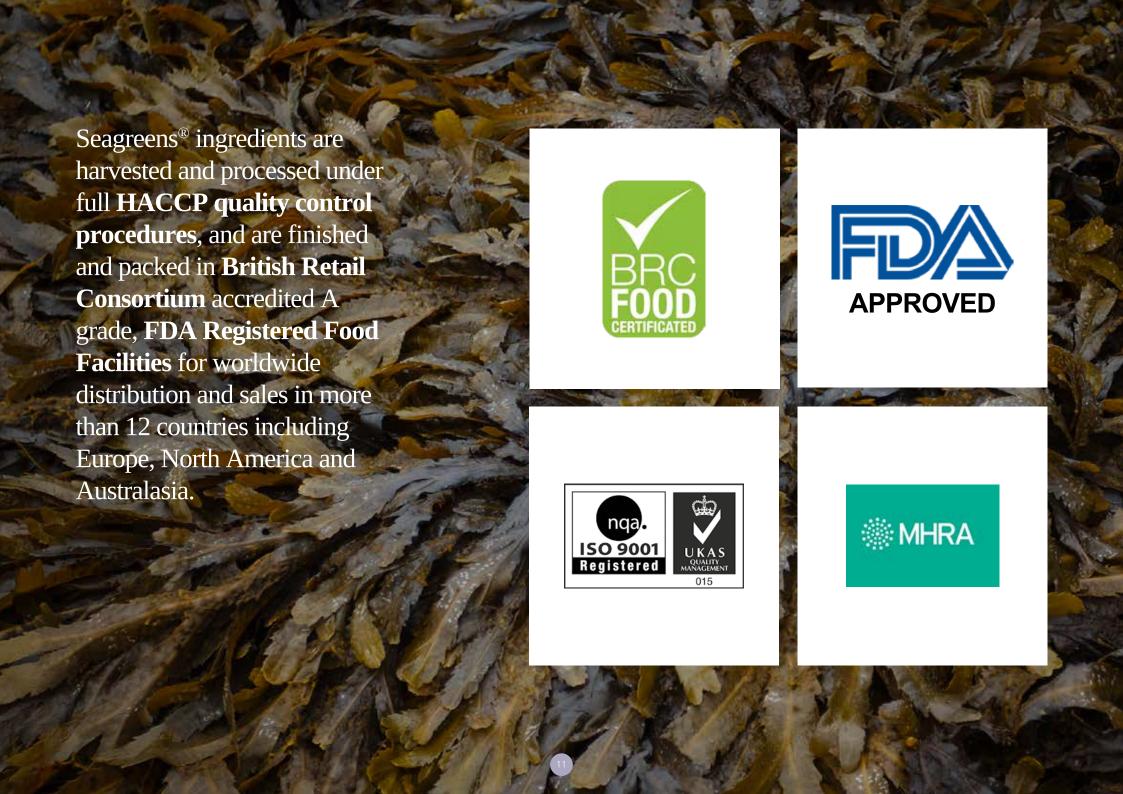
Alaria esculenta: Winged kelp, Dabberlocks

Similar to Japanese *Wakame* but a different species, Winged kelp has moderate *umami* flavour, and moderate iodine.

Unlike Dulse it has a *distinctly sweet*, *clean taste and aroma*, highly suitable for tea blends, fruit juices, and nutritious smoothies.

Seagreens® Triblend Fine and Medium Granules

Ascophyllum, Fucus, Pelvetia: Knotted, Bladder, and Channel wrack


Species can be blended to meet *nutritional* and regulatory requirements, flavours, aromas and textures.

A blend can add uniqueness to a high quality supplement or food formula, or help achieve desired nutrition and health claims.

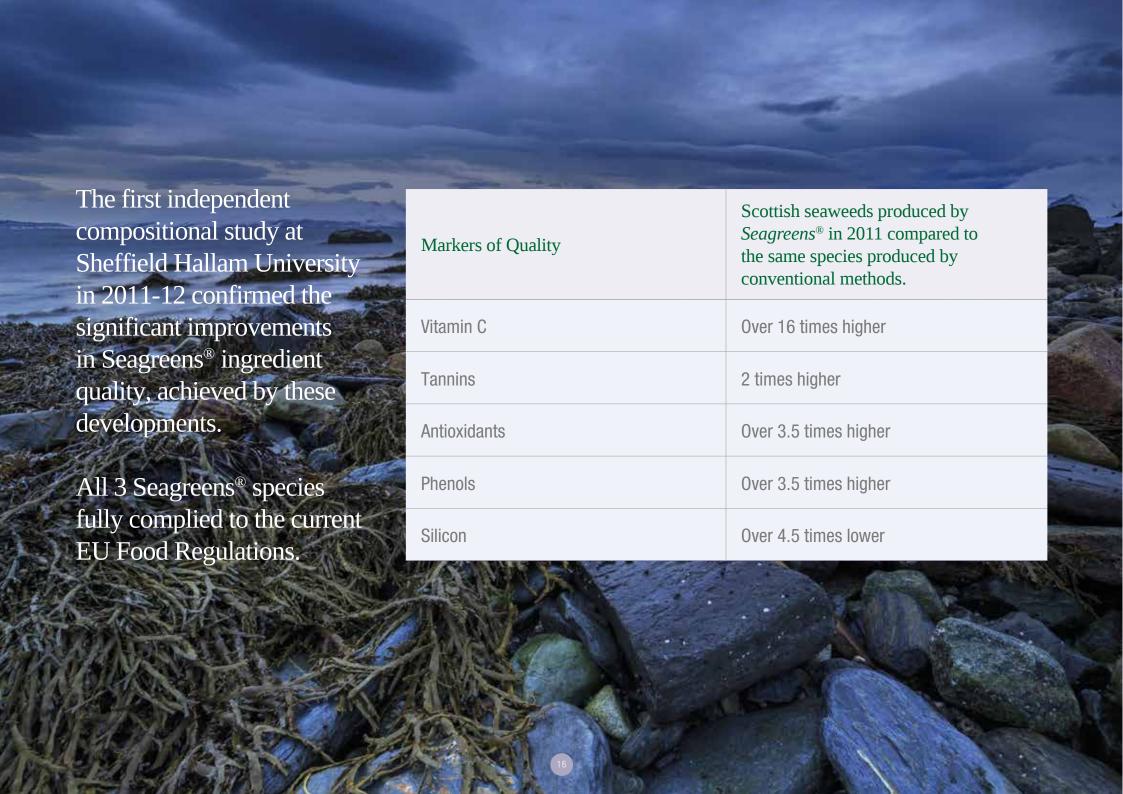
Most blends are made for a customer requirement, but some well proven blends are available from stock.

Standard Operating Procedures are directly supervised, including in-line processing checks and full metals detection and removal, to **Current Good Manufacturing Practice** (cGMP). SOPs and Master File include Customer Complaints, Recall Procedures and Retained Sampling, compliant with all relevant national and international regulations. Seagreens® are additionally certified **Organic**, Beth Din Kosher for Passover, and can be declared Nonallergenic, Raw, Vegan and Halal compliant.

When Seagreens® began in 1998, 'Organic' included dead seaweed collected on a clean beach, and it still does.

The need for quality assurance led Simon to work with the UKAS accredited certification body, the Biodynamic Association, to develop Nutritious Food Seaweed, the world's first standard to a comprehensive minimum nutritional profile.

Successfully audited since 2016 by Clearspring, Unilever, Viridian, Waitrose, and others. Many seaweed species are rich in minerals, trace elements and other micronutrients. Some provide all the B vitamins including B12, a good ratio of fatty acids and soluble fibre. Generic compositional data for most seaweed is available from academic sources, but many production factors affect the nutrient profile and product quality.


Comparison in foods using atomic absorption spectrophotometry

Minerals: Sodium, Potassium, Calcium, Magnesium Trace elements: Iron, Zinc, Manganese, Copper

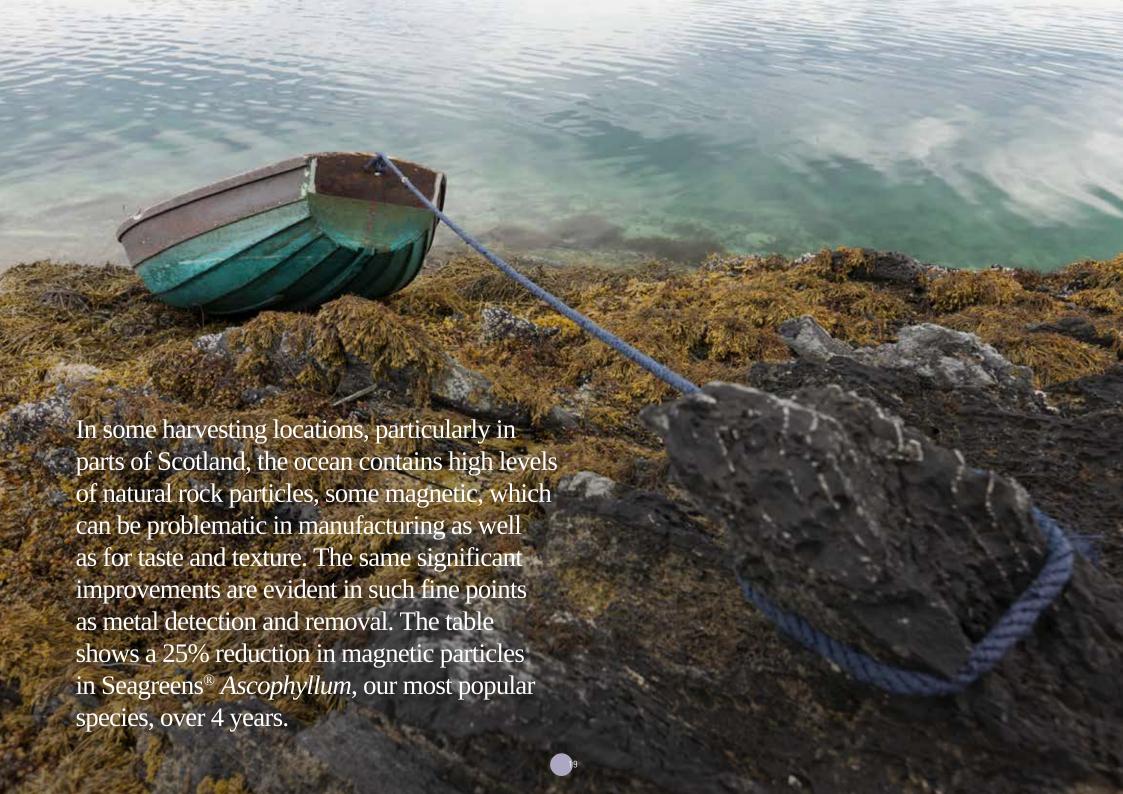
		Minerals mg/100g	Trace elements mg/100g		
Bladderwrack	Fucus vesiculosus				
Kelp	Laminaria digitata				
Wakame	Undaria pinnifitada	8,000 - 17,900	n/a		
Carragheen	Chondrus crispus				
Laver	Porphyra tenera				
Spinach		9,700			
Tomatoes		6,000			
Potatoes		3,400			
Carrots		3,300			
Green peas		1,450			
Sweet corn		1,350			

⁻ Ruperez. P., 2002. Mineral content of edible marine seaweeds. Food Chemistry 79: 23-26

Over the years, the collection of consistent, independent analytical data from each harvested batch, continues to guide production and improvements continue to be made.

Nutrient improvements over 10 years

Vitamin C up a further 131% Polyphenols up a further 6.5%


Nutrient Data averages over 10 years from 2008-2018							
	Specification	Measure	All Ascophyllum to 2016	All Fucus vesiculosus	All Scotland Ascophyllum	Ascophyllum since 2016	
Nutrients - markers							
lodine	700	μg/g	781.750	424.714	735.222	921.33	
Vitamin C	>6	mg/100g	12.320	7.650	5.490	28.475	
Polyphenols	>1500	mg/kg	27,954.833	26,596.667	25,780.000	29,784.500	
Tannins	TBA	g/100g	3.667	4.000	4.500	-	
Silicon	TBA	mg/kg	75.116	123.597	83.283	-	
Moisture	<14	%	11.591	11.056	12.715	5.970	
Total phenolics (Gallic Acid equiv)	TBA	mg/g	29.343	144.495	28.850	-	
Antioxidant capacity ORAC	TBA	μmole/TE/g	72.455	244.495	201.667	-	
Particle size	TBA	% <0.6mm	-	-	-	-	
Amino acids							
Alanine	TBA	g/kg	0.177	0.241	-	-	
Arginine	TBA	g/kg	0.115	0.150	-	-	
Asparagine	TBA	g/kg	-	0.250	_	-	
Aspartic acid	TBA	g/kg	0.327	0.417	_	-	
Cystine	TBA	g/kg	0.073	0.295	-	-	
Cystathionine (free)	TBA	g/kg	-	-	-	-	
Glutamic acid	TBA	g/kg	0.400	0.579	-	-	
Glutamine (free)	TBA	g/kg	-	-	-	-	
Glycine	TBA	g/kg	0.154	0.193	-	-	

Our analytical data covers not only nutrients but contaminants, microbials, allergens, moisture, particle size and other determinants of production quality. Removing fossil fuels in 2016, reduced polyaromatic hydrocarbons, often found in dried or smoked foods and already well below EU regulatory levels, over 60%.

Contaminant improvements over 10 years

Polyaromatic hydrocarbons reduced by more than 60%

Contaminant Data averages over 10 years from 2008-2018							
	Specification	Measure	All Ascophyllum to 2016	All Fucus vesiculosus	All Scotland Ascophyllum	Ascophyllum since 2016	
Heavy metals	'	<u>'</u>					
Arsenic (total)	None	mg/kg	28.375	47.008	28.771	26.594	
Arsenic (inorganic)	≤1	mg/kg	0.324	0.291	0.360	0.310	
Cadmium (EU Reg is \leq 3)	≤1	mg/kg	0.551	0.820	0.385	0.686	
Lead	≤3	mg/kg	0.675	0.891	0.785	0.534	
Mercury	≤0.1	mg/kg	0.026	0.014	0.030	0.020	
Aluminium	None	mg/kg	-	-	-	-	
Microbiology							
Total Plate Count	≤10000	cfu/g	231.875	29.091	287.273	183.333	
Coliforms	≤100	cfu/g	12.733	16.364	17.000	7.000	
Yeast and mould	≤1000	cfu/g	63.875	73.636	74.545	67.333	
Enterobacteriaceae	≤10	cfu/g	6.867	16.364	8.100	7.333	
Escherichia coli	≤10	cfu/g	6.067	8.182	7.000	7.000	
Staphylococcus aureus	≤10	cfu/g	8.000	25.455	9.000	10.000	
Salmonella	ND	cfu/25g	-	-	-	-	
Vibrio species	ND	cfu/25g	-	-	-	-	
Contaminants							
Pesticide residues	≤0.01	mg/kg	0.001	0.003	0.003	-	
Aromatic hydrocarbons PAH4	≤50	μg/kg	12.350	9.160	27.000	6.700	
Radioactivity							
Activity in Cesium 134	TBA	Bq/kg	-	-	-	-	
Activity in Cesium 137	TBA	Bq/kg	-	-	-	-	

ASCO batch	Batch volume processed kg	Whittaker volume as sample rec'd kg	Removed volume expressed as %	Date processed	Harvest	Average % by harvest location	Average % by total harvest
AFG.027.1702	1,050	0.5936	0.0565	15.06.2015	Scotland	0.0565	0.0565
AMG.027.2002	1,045	0.1517	0.0145	15.06.2015	Scotland	0.0355	0.0355
AFG.027.1602	1,050	0.7652	0.0729	15.06.2015	Scotland	0.0480	0.0480
AFG.027.1902	1,075	0.6758	0.0629	15.06.2015	Scotland	0.0517	0.0517
AFG.027.1802	963	0.7075	0.0735	15.06.2015	Scotland	0.0561	0.0561
AFG.027.0415	1,275	0.7142	0.0560	15.06.2015	Scotland	0.0560	0.0560
AFG.029.0806	1,000	0.9430	0.0943	23.04.2015	Scotland	0.0615	0.0719
AFG.029.1206	1,000	1.0560	0.1056	23.04.2016	Scotland	0.0670	0.0670
AFG.029.0906	1,000	0.8884	0.0888	23.04.2016	Scotland	0.0694	0.0694
FG.029.1006	1,000	1.1250	0.1125	23.04.2016	Scotland	0.0738	0.0738
AFG.029.1106	1,000	0.8814	0.0881	23.04.2016	Scotland	0.0751	0.0751
SMM.030.1002	1,000	0.3880	0.0388	07.03.2016	Scotland	0.0720	0.0720
SMM.030.1102	1,000	0.1795	0.0180	07.03.2016	Scotland	0.0679	0.0679
SMM.030.0902	1,000	0.8416	0.0842	07.03.2016	Scotland	0.0690	0.0690
NFG.031.2103	1,000	1.0545	0.1055	01.05.2016	Scotland	0.0715	0.0715
AFG.031.2203	1,000	1.4092	0.1409	01.05.2016	Scotland	0.0758	0.0758
AFG.031.2303	1,000	0.9809	0.0981	01.05.2016	Scotland	0.0771	0.0771
MG.032.3101	1,000	0.1077	0.0108	06.09.2016	Iceland	0.0734	0.0734
MG.032.3201	1,000	0.1410	0.0141	06.09.2016	Iceland	0.0703	0.0703
AMG.032.3301	1,000	0.1216	0.0122	06.09.2016	Iceland	0.0674	0.0674
AMG.032.3401	1,000	0.1378	0.0138	06.09.2016	Iceland	0.0648	0.0648
AFG.033.2603	1,000	0.3595	0.0360	25.10.2017	Iceland	0.0635	0.0635
AFG.033.2703	1,000	0.2425	0.0243	25.10.2017	Iceland	0.0301	0.0618
AFG.033.2803	1,000	0.2457	0.0246	25.10.2017	Iceland	0.0603	0.0603
AFG.033.2903	1,000	0.2431	0.0243	25.10.2017	Iceland	0.0588	0.0588
AMG.033.3501	1,000	0.1021	0.0102	25.10.2017	Iceland	0.0570	0.0570
AMG.033.3601	1,000	0.0000	0.0000	25.10.2017	Iceland	0.0549	0.0549
AMG.033.3701	1,000	0.2136	0.0214	25.10.2017	Iceland	0.0537	0.0537
AMG.033.3801	1,000	0.1158	0.0116	25.10.2017	Iceland	0.0522	0.0522
AFG.034.1003	1,000	0.2070	0.0207	15.12.2019	Iceland	0.0512	0.0512
AFG.034.1004	1,000	0.1715	0.0172	15.12.2019	Iceland	0.0501	0.0501
AFG.034.1000	1,000	0.2534	0.0253	15.12.2019	Iceland	0.0493	0.0493
AFG.034.1001	1,000	0.2540	0.0254	15.12.2019	Iceland	0.0486	0.0486
AFG.034.1002	1,000	0.1965	0.0197	15.12.2019	Iceland	0.0477	0.0477
AFG.035.1008	1,000	0.2851	0.0285	25.07.2019	Iceland	0.0189	0.0472
AFG.035.1009	1,000	0.1960	0.0196	25.07.2019	Iceland	0.0189	0.0464
AFG.035.1010	1,000	0.4796	0.0480	25.07.2019	Iceland	0.0204	0.0464
AFG.035.1011	1,000	0.4899	0.0490	25.07.2019	Iceland	0.0217	0.0465
AFG.035.1012	1,000	0.2063	0.0206	25.07.2019	Iceland	0.0217	0.0458
AFG.035.1013	1,000	0.3288	0.0329	25.07.2019	Iceland	0.0222	0.0455
AFG.035.1014	1,000	0.4906	0.0491	25.07.2019	Iceland	0.0233	0.0456
Totals	41,458	18.9446	0.0457	-	-	-	-
Averages	1,011	0.4621	0.0512	-	-	-	-
Total average	_	_	0.0457	_	_	-	_

Many seaweeds are ideal sources of iodine, with regulatory, QA and NPD implications. Good data is vital to purchasing, food technicians and formulators. Seagreens® has published international data based on analytical studies over more than a decade. Unique data, unique support, and *guaranteed parameters in our* ingredients.

Iodine levels mg/kg (μg/g)	Actual levels	Variance	Average 2020	
Species				
Alaria	108-1070	962	589 (mean*)	
Ascophyllum	604-1480	876	870	
Fucus	270-522	252	425	
Palmaria	72-292	220	200	
Pelvetia	185-316	131	262	

^{*}more data required to establish average, probably higher

These are the kind of details which also concern our Technical Director,

Jeremy Stephens, for they are the essence of unvarying quality and helping others do their work effectively.

"We make mistakes, we are honest, we put things right. Working with our customers is the way we learn and achieve, it is always a step forward, the most rewarding thing."

The most recent international review of seaweed nutrition research* identifies 35 species as candidates for human food and health. But today only a handful are commercially available with:

 A known comprehensive profile of nutrients and contaminants.

- Full documentation over 10 years of sustainable production.
- Independently certified status as non-allergenic and compliant with international food safety regulations.
- In use in a wide range of food and nutrition products for well over a decade.

These are the 5 native species which are the focus of Seagreens® production spanning 5 remote locations in the British isles and Nordic region.

*Cornish ML, Critchley AT, and Mouritsen OG. A role for dietary macroalgae in the amelioration of certain risk factors associated with cardiovascular disease. Phycologia, Vol 54 (6), 649-666, 2015.

Seagreens business model is a consortium of production, management, and distribution partners. From harvest to our customers, and to the end use of these ingredients, **batch coding** is allocated at selection and provides full **traceability** throughout the **chain of custody**. More than 75% of our customers are 'brand partners', who identify their Seagreens® ingredient in their product and have open access to our know-how - *testimony to an integrated partnership that works*.

Geoff Van Hurst is our Director of Operations and the catalyst of productive activities and relationships with all our partners and customers.

"I am very much in service to the group. Seldom a day without fresh demands, or a week without fresh achievements. I think it was Churchill who said that 'success is not final, failure is not fatal, it is the courage to continue that counts'!"

- 20 years in production specifically for human consumption
- 10 years leading nutrition research and compositonal data
- Awarded for sustainable production, products and research
- 15 nutritious ingredients from 5 seaweed species
- 1kg to 5,000kg available from stock with global distribution
- Price consistency and equivalence in worldwide markets
- Respected international brand name for use by customers
- First British seaweed producer certified Organic in 1998
- First certified to Nutritious Food Seaweed Standard 2016

Geoffrey Van Hurst

Director of Operations 07931 528243 geoff@seagreens.co.uk

Jeremy Stephens

Technical Director 07702 040773 jeremy.stephens@seagreens.co.uk

Paul Hoole

Director, Seagreens Trade Direct 01342 888095 tradedirect@seagreens.co.uk

Seagreens Ltd 1 The Warren Handcross West Sussex RH17 6DX Great Britain

+44 (0)1444-400403 info@seagreens.co.uk www.seagreens.co.uk

Administered in the interests of our Partners and Customers by Seagreens Trust.